'$$n$$' waves are produced on a string in 1 second. When the radius of the string is doubled, keeping tension same, the number of waves produced in 1 second for the same harmonic will be
the magnetic flux (in weber) in a closed circuit of resistance $$20 \Omega$$ varies with time $$t$$ second according to equation $$\phi=5 t^2-6 t+9$$. The magnitude of induced current at $$t=0.2$$ second is
If '$$E$$' and '$$L$$' denote the magnitude of total energy and angular momentum of revolving electron in $$\mathrm{n}^{\text {th }}$$ Bohr orbit, then
The magnetic field inside a current carrying toroidal solenoid is $$0.2 \mathrm{~mT}$$. What is the magnetic field inside the toroid if the current through it is tripled and radius is made $$\frac{1}{3}^{\text {rd}}$$ ?