1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$f(x)=\cot ^{-1} x+x$$ is increasing in the interval.

A
$$(-\infty, \infty)$$
B
$$(0,3)$$
C
$$(1, \infty)$$
D
$$(-1, \infty)$$
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=$$

A
$$\frac{1}{5}$$
B
$$\frac{1}{10}$$
C
$$\frac{-1}{10}$$
D
$$\frac{-1}{5}$$
3
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $$(\log x)^x$$ with respect to $$\log x$$ is

A
$$(\log x)^x\left[\frac{1}{\log x} \log (\log x)\right]$$
B
$$(\log x)^x\left[\log x+\frac{1}{\log (\log x)}\right]$$
C
$$x(\log x)^x\left[\frac{1}{\log x}+\log (\log x)\right]$$
D
$$x(\log x)^x\left[\log x+\frac{1}{\log (\log x)}\right]$$
4
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int e^{\tan x}\left(\sec ^2 x+\sec ^3 x \sin x\right) d x=$$

A
$$\tan x \cdot e^{\tan x}+c$$
B
$$(1+\tan \mathrm{x}) \mathrm{e}^{\tan \mathrm{x}}+\mathrm{c}$$
C
$$\sec \mathrm{x} \cdot \mathrm{e}^{\tan \mathrm{x}}+\mathrm{c}$$
D
$$\mathrm{e}^{\tan x}+\tan \mathrm{x}+\mathrm{c}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12