1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$y(1+\log x)\left(\frac{d x}{d y}\right)-x \log x=0$$ is

A
$$y(1+\log x)=c$$
B
$$x \log x=y c$$
C
$$x \log x=y+c$$
D
$$\log x-y=c$$
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

Negation of the statement $$\forall x \in R, x^2+1=0$$ is

A
$$\exists x \in R$$ such that $$x^2+1<0$$.
B
$$\exists x \in R$$ such that $$x^2+1 \neq 0$$.
C
$$\exists x \in R$$ such that $$x^2+1 \leq 0$$.
D
$$\exists \mathrm{x} \in \mathrm{R}$$ such that $$\mathrm{x}^2+1=0$$.
3
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The Cartesian equation of the plane passing through the point A(7, 8, 6) and parallel to the XY plane is

A
z = 1
B
y = 8
C
x = 7
D
z = 6
4
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$F(\propto)=\left[\begin{array}{ccc}\cos \propto & -\sin \propto & 0 \\ \sin \propto & \cos \propto & 0 \\ 0 & 0 & 1\end{array}\right]$$, where $$\propto \in R$$, then $$[F(\propto)]^{-1}=$$

A
$$F(-\propto)$$
B
$$\mathrm{F}(2 \propto)$$
C
$$F(\propto)$$
D
$$F(3 \propto)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12