1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]$$, then $$\int_\limits1^4 f(x) d x=$$

A
$$\frac{1}{2}$$
B
7
C
$$\frac{9}{2}$$
D
$$\frac{19}{2}$$
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+2 y-1}{x+2 y+1}$$ is

A
$$3(x+y)+4 \log |3 x+6 y-1|=K$$
B
$$3(x-y)+4 \log |3 x+6 y-1|=K$$
C
$$6(-x+y)+4 \log |3 x+6 y-1|=K$$
D
$$6(x+y)+4 \log |3 x+6 y-1|=K$$
3
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{X}$$ is a random variable with p.m.f. as follows.

$$\begin{aligned} \mathrm{P}(\mathrm{X}=\mathrm{x}) & =\frac{5}{16}, \mathrm{x}=0,1 \\ & =\frac{\mathrm{kx}}{48}, \mathrm{x}=2, \quad \text { then } \mathrm{E}(\mathrm{x})= \\ & =\frac{1}{4}, \mathrm{x}=3 \end{aligned}$$

A
1.1875
B
1.3125
C
1.5625
D
0.5625
4
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A body at an unknown temperature is placed in a room which is held at a constant temperature of $$30^{\circ} \mathrm{F}$$. If after 10 minutes the temperature of the body is $$0^{\circ} \mathrm{F}$$ and after 20 minutes the temperature of the body is $$15^{\circ} \mathrm{F}$$, then the expression for the temperature of the body at any time $$\mathrm{t}$$ is

A
$$\mathrm{T}=-60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
B
$$\mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30$$
C
$$\mathrm{T}=60 \mathrm{e}^{-0.069 t}+30$$
D
$$\mathrm{T}=60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12