1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]$$, then $$\int_\limits1^4 f(x) d x=$$

A
$$\frac{1}{2}$$
B
7
C
$$\frac{9}{2}$$
D
$$\frac{19}{2}$$
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+2 y-1}{x+2 y+1}$$ is

A
$$3(x+y)+4 \log |3 x+6 y-1|=K$$
B
$$3(x-y)+4 \log |3 x+6 y-1|=K$$
C
$$6(-x+y)+4 \log |3 x+6 y-1|=K$$
D
$$6(x+y)+4 \log |3 x+6 y-1|=K$$
3
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{X}$$ is a random variable with p.m.f. as follows.

$$\begin{aligned} \mathrm{P}(\mathrm{X}=\mathrm{x}) & =\frac{5}{16}, \mathrm{x}=0,1 \\ & =\frac{\mathrm{kx}}{48}, \mathrm{x}=2, \quad \text { then } \mathrm{E}(\mathrm{x})= \\ & =\frac{1}{4}, \mathrm{x}=3 \end{aligned}$$

A
1.1875
B
1.3125
C
1.5625
D
0.5625
4
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A body at an unknown temperature is placed in a room which is held at a constant temperature of $$30^{\circ} \mathrm{F}$$. If after 10 minutes the temperature of the body is $$0^{\circ} \mathrm{F}$$ and after 20 minutes the temperature of the body is $$15^{\circ} \mathrm{F}$$, then the expression for the temperature of the body at any time $$\mathrm{t}$$ is

A
$$\mathrm{T}=-60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
B
$$\mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30$$
C
$$\mathrm{T}=60 \mathrm{e}^{-0.069 t}+30$$
D
$$\mathrm{T}=60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12