1
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\widehat j - \widehat k$$ is

A
$$\mathrm{x-4y-z+3=0}$$
B
$$\mathrm{x+4y+5z-27=0}$$
C
$$\mathrm{x-4y-5z+23=0}$$
D
$$\mathrm{x-4y+z-7=0}$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$$ and $$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right]$$, then values of a and c are respectively

A
$$\frac{1}{2}, \frac{1}{2}$$
B
$$-1,1$$
C
$$2, \frac{-1}{2}$$
D
$$1,-1$$
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

For all real $$x$$, the minimum value of the function $$f(x)=\frac{1-x+x^2}{1+x+x^2}$$ is

A
$$\frac{1}{3}$$
B
0
C
3
D
1
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The objective function $$z=4 x+5 y$$ subjective to $$2 x+y \geq 7 ; 2 x+3 y \leq 15 ; y \leq 3, x \geq 0 ; y \geq 0$$ has minimum value at the point.

A
on the line $$2 x+3 y=15$$
B
on X-axis
C
on Y-axis
D
origin
MHT CET Papers
EXAM MAP