1
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$$ and $$\bar{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+2 \hat{k})$$ is

A
$$\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$$
B
$$\frac{x-3}{3}=\frac{y+1}{2}=\frac{z-2}{2}$$
C
$$\frac{x+3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$$
D
$$\frac{x-3}{2}=\frac{y+1}{2}=\frac{z-2}{3}$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { } f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \text {, if } 1 \leq x<0 \\ & =\frac{2 x+1}{x-2} \quad \text {, if } 0 \leq x \leq 1 \\ \end{aligned}$$

is continuous in the interval $$[-1,1]$$, then $$p=$$

A
1
B
$$-$$1
C
$$\frac{-1}{2}$$
D
$$\frac{1}{2}$$
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $$f(x)=\log (1+x)-\frac{2 x}{2+x}$$ is increasing on

A
$$(-\infty, \infty)$$
B
$$(-5, \infty)$$
C
$$(-\infty, 0)$$
D
$$(-1, \infty)$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

A
$$\left(\frac{1}{2}\right)\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$$
B
$$\left[\begin{array}{ccc}\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
C
$$\left[\begin{array}{ccc}\frac{1}{2} & -1 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$$
D
$$\left(\frac{1}{2}\right)\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12