1
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$$ and $$\bar{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+2 \hat{k})$$ is

A
$$\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$$
B
$$\frac{x-3}{3}=\frac{y+1}{2}=\frac{z-2}{2}$$
C
$$\frac{x+3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$$
D
$$\frac{x-3}{2}=\frac{y+1}{2}=\frac{z-2}{3}$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { } f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \text {, if } 1 \leq x<0 \\ & =\frac{2 x+1}{x-2} \quad \text {, if } 0 \leq x \leq 1 \\ \end{aligned}$$

is continuous in the interval $$[-1,1]$$, then $$p=$$

A
1
B
$$-$$1
C
$$\frac{-1}{2}$$
D
$$\frac{1}{2}$$
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $$f(x)=\log (1+x)-\frac{2 x}{2+x}$$ is increasing on

A
$$(-\infty, \infty)$$
B
$$(-5, \infty)$$
C
$$(-\infty, 0)$$
D
$$(-1, \infty)$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

A
$$\left(\frac{1}{2}\right)\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$$
B
$$\left[\begin{array}{ccc}\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
C
$$\left[\begin{array}{ccc}\frac{1}{2} & -1 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$$
D
$$\left(\frac{1}{2}\right)\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12