1
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The feasible region for the inequations $$x+2 y \geq 4,2 x+y \leq 6, x, y \geq 0$$ is

A
COMEDK 2023 Morning Shift Mathematics - Linear Programming Question 11 English Option 1
B
COMEDK 2023 Morning Shift Mathematics - Linear Programming Question 11 English Option 2
C
COMEDK 2023 Morning Shift Mathematics - Linear Programming Question 11 English Option 3
D
COMEDK 2023 Morning Shift Mathematics - Linear Programming Question 11 English Option 4
2
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The maximum value of $$Z=10 x+16 y$$, subject to constraints $$x \geq 0, y \geq 0, x+y \leq 12,2 x+y \leq 20$$ is

A
144
B
192
C
120
D
240
3
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$$, then $$A^{-1}$$ equals to

A
$$\left[\begin{array}{cc}2 & 1 \\ -3 / 2 & -1\end{array}\right]$$
B
$$\left[\begin{array}{cc}2 & -1 \\ -3 / 2 & 1\end{array}\right]$$
C
$$\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1\end{array}\right]$$
D
$$\left[\begin{array}{cc}-2 & -1 \\ 3 / 2 & 1\end{array}\right]$$
4
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$A$$ is a matrix of order $$4 \operatorname{such}$$ that $$A(\operatorname{adj} A)=10 \mathrm{~I}$$, then $$|\operatorname{adj} A|$$ is equal to

A
10
B
100
C
1000
D
10000
EXAM MAP