If $$f(x) = \left\{ {\matrix{ {2\sin x} & ; & { - \pi \le x \le {{ - \pi } \over 2}} \cr {a\sin x + b} & ; & { - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & ; & {{\pi \over 2} \le x \le \pi } \cr } } \right.$$ and it is continuous on $$[-\pi, \pi]$$, then
The value of $$\lim _\limits{x \rightarrow \infty}\left(\frac{x^2-2 x+1}{x^2-4 x+2}\right)^{2 x}$$ is
$$S \equiv x^2+y^2-2 x-4 y-4=0$$ and $$S^{\prime} \equiv x^2+y^2-4 x-2 y-16=0$$ are two circles the point $$(-2,-1)$$ lies
A number $$\mathrm{n}$$ is chosen at random from $$s=\{1,2,3, \ldots, 50\}$$. Let $$\mathrm{A}=\{n \in s: n$$ is a square $$\}$$, $$\mathrm{B}=\{n \in s: n$$ is a prime$$\}$$ and $$\mathrm{C}=\{n \in s: n$$ is a square$$\}$$. Then, correct order of their probabilities is