1
GATE PI 2012
MCQ (Single Correct Answer)
+2
-0.6
A mold having dimensions $$100 \times 90 \times 20$$ (all in $$mm$$) is filled with molten metal througgh a gate with height $$'h'$$ and $$C.S$$ area $$A,$$ the mould filling time is $${t_1}$$. The height is now quadrupled and the cross sectional area is halved. The corresponding filling time is $${t_2}$$. The ratio $${t_2}/{t_1}$$ is
A
$${1 \over {\sqrt 2 }}$$
B
$$1$$
C
$${\sqrt 2 }$$
D
$$2$$
2
GATE PI 2012
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of the function $$F\left( s \right) = {1 \over {s\left( {s + 1} \right)}}$$ is given by
A
$$f\left( t \right) = \sin \,t$$
B
$$f\left( t \right) = {e^{ - t}}\sin \,t$$
C
$$f\left( t \right) = {e^{ - t}}$$
D
$$f\left( t \right) = 1 - {e^{ - t}}$$
3
GATE PI 2012
MCQ (Single Correct Answer)
+1
-0.3
For the matrix $$A = \left[ {\matrix{ 5 & 3 \cr 1 & 3 \cr } } \right],$$ ONE of the normalized eigen vectors is given as
A
$$\left( {\matrix{ {{1 \over 2}} \cr {{{\sqrt 3 } \over 2}} \cr } } \right)$$
B
$$\left( {\matrix{ {{1 \over {\sqrt 2 }}} \cr {{{ - 1} \over {\sqrt 2 }}} \cr } } \right)$$
C
$$\left( {\matrix{ {{3 \over {\sqrt {10} }}} \cr {{{ - 1} \over {\sqrt {10} }}} \cr } } \right)$$
D
$$\left( {\matrix{ {{1 \over 5}} \cr {{2 \over {\sqrt 5 }}} \cr } } \right)$$
4
GATE PI 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $$\,\,{x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - 4y = 0\,\,\,$$ with the boundary conditions of $$\,\,y\left( 0 \right) = 0\,\,\,$$ and $$\,\,y\left( 1 \right) = 1.\,\,\,$$ The complete solution of the differential equation is
A
$${x^2}$$
B
$$\sin \left( {{{\pi x} \over 2}} \right)$$
C
$${e^x}\sin \left( {{{\pi x} \over 2}} \right)$$
D
$${e^{ - x}}\sin \left( {{{\pi x} \over 2}} \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12