1
GATE PI 2008
MCQ (Single Correct Answer)
+1
-0.3
The solutions of the differential equation $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 2y = 0\,\,$$ are
A
$${e^{ - \left( {1 + i} \right)x}},{e^{ - \left( {1 - i} \right)x}}$$
B
$${e^{\left( {1 + i} \right)x}},\,\,{e^{\left( {1 - i} \right)x}}$$
C
$${e^{ - \left( {1 + i} \right)x}},\,\,{e^{\left( {1 + i} \right)x}}$$
D
$${e^{\left( {1 + i} \right)x}},\,\,{e^{ - \left( {1 + i} \right)x}}$$
2
GATE PI 2008
MCQ (Single Correct Answer)
+1
-0.3
The value of the expression $${{ - 5 + 10i} \over {3 + 4i}}$$ is
A
$$1 - 2i$$
B
$$1 + 2i$$
C
$$2 - i$$
D
$$2 + i$$
3
GATE PI 2008
MCQ (Single Correct Answer)
+2
-0.6
The eigen vector pair of the matrix $$\left[ {\matrix{ 3 & 4 \cr 4 & { - 3} \cr } } \right]$$ is
A
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
C
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
D
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
4
GATE PI 2008
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $$8$$ $${t^3}$$ is
A
$${8 \over {{s^4}}}$$
B
$${{16} \over {{s^4}}}$$
C
$${{24} \over {{s^4}}}$$
D
$${{48} \over {{s^4}}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12