1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If $A, B$ are two square matrices, such that $A B=A, B A=B$, then $(A+B)^7$ equals

A
$A+B$
B
$2^7(A+B)$
C
$2^6(A+B)$
D
$2^8(A+B)$
2
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$, then $\left(B B^T A\right)^5$ is equal to

A
$\left[\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right]$
B
$\frac{1}{2}\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
C
$\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
D
$\left[\begin{array}{ll}5 & 1 \\ 0 & 1\end{array}\right]$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If matrix $$A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$$ is given to be symmetric, then the value of $$a b$$ is

A
1
B
0
C
$$-$$1
D
9/4
4
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

The determinant of the matrix $$\left[\begin{array}{ccc}1 & 4 & 8 \\ 1 & 9 & 27 \\ 1 & 16 & 64\end{array}\right]$$ is

A
13
B
208
C
52
D
104
VITEEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12