1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If $A, B$ are two square matrices, such that $A B=A, B A=B$, then $(A+B)^7$ equals

A
$A+B$
B
$2^7(A+B)$
C
$2^6(A+B)$
D
$2^8(A+B)$
2
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$, then $\left(B B^T A\right)^5$ is equal to

A
$\left[\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right]$
B
$\frac{1}{2}\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
C
$\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
D
$\left[\begin{array}{ll}5 & 1 \\ 0 & 1\end{array}\right]$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If matrix $$A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$$ is given to be symmetric, then the value of $$a b$$ is

A
1
B
0
C
$$-$$1
D
9/4
4
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

The determinant of the matrix $$\left[\begin{array}{ccc}1 & 4 & 8 \\ 1 & 9 & 27 \\ 1 & 16 & 64\end{array}\right]$$ is

A
13
B
208
C
52
D
104
VITEEE Subjects
EXAM MAP