Limits, Continuity and Differentiability · Mathematics · VITEEE
MCQ (Single Correct Answer)
For $$x \in R, f(x)=|\log 2-\sin x|$$ and $$g(x)=f(f(x))$$, then
The value of $$\lim _\limits{x \rightarrow \infty}\left[\frac{p^{1 / x}+q^{1 / x}+r^{1 / x}+s^{1 / x}}{4}\right]^{3 x}, p, q, r, s>0 \text {, }$$ is
If $$f(x)=\left\{\begin{array}{cc}(\sin x+\cos x)^{\operatorname{cosec} x} & ,-\frac{\pi}{2}< x<0 \\ a & ,x=0 \\ \frac{e^{1 / x}+e^{2 / x}+e^{3 / x}}{a e^{-2+\frac{1}{x}}+b e^{-1+\frac{3}{x}}} & , 0< x<\frac{\pi}{2}\end{array}\right.$$ is continuous at $$x=0$$, then the value of $$(b, a)$$ is
The value of $$\lim _\limits{t \rightarrow \infty} \frac{\ln \left(\frac{3}{2} t\right)}{t^2}$$
The value of $$f(x) = \mathop {\lim }\limits_{x \to 2} {{{x^3} - 3{x^2} + 4} \over {{x^4} - 7x - 2}}$$
$$\lim _\limits{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{1 / x}$$ is equal to
The value of $$\lim _\limits{n \rightarrow \infty}\left\{\frac{1+2+3+\ldots+n}{n+2}-\frac{n}{2}\right\}$$ is
If $$f(x)=\left\{\begin{array}{cc}\frac{(1-\cos 4 x)}{x^2}, & \text { if } x < 0 \\ a, & \text { if } x=0, \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & \text { if } x > 0\end{array}\right.$$ then $$f(x)$$ is continuous at $$x=0$$, for $$a$$