Complex Numbers · Mathematics · VITEEE

Start Practice

MCQ (Single Correct Answer)

1

The complex number $z$ satisfying $z+|z|$ $=1+7 i$, then the value of $|z|^2$ equals

VITEEE 2024
2

If $$z_1, z_2$$ and $$z_3$$ are the vertices $$A, B$$ and $$C$$ respectively of an isosceles right angled triangle with right angled at $$C$$, then $$\left(z_1-z_3^{\prime}\right)\left(z_2-z_3\right)$$ equals to

VITEEE 2023
3

If $$\alpha$$ is a non -real fifth root of unity, then the value of $$3^{\left|1+\alpha+\alpha^2+\alpha^{-2}-\alpha^{-1 \mid}\right|}$$, is

VITEEE 2023
4

If $$\alpha, \beta$$ and $$\gamma$$ are the cube roots of $$P,(P<0)$$, then for any $$x, y$$ and $$z$$ which does not make denominator zero, the expression $$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$$ equals to

VITEEE 2023
5

If $$x+\frac{1}{x}=1$$ and $$p=x^{4000}+\frac{1}{x^{4000}}$$ and $$q$$ is the digit at unit place in the number $$2^{2 n}+1$$, then the value of $$(p+q)$$ is equal to

VITEEE 2023
6

Let $$z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots \ldots \ldots$$ 9, then $$\frac{1}{10}\left\{\left|1-z_1\right|\left|1-z_2\right| \ldots .\left|1-z_a\right|\right\}$$ equals to

VITEEE 2023
7

The condition in order that $$Z_1, Z_2, Z_3$$ are vertices of an isosceles triangle right angled at $$z_2$$, is

VITEEE 2022
8

If $$(1+i)(2 i+1)(1+3 i) \ldots(1+n i)=x+i y$$, then $$2 \cdot 5 \cdot 10 \ldots\left(1+n^2\right)$$ is equal to

VITEEE 2021
9

The non-zero solutions of the equation $$z^2+|z|=0$$, where $$z$$ is a complex number, are

VITEEE 2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12