Complex Numbers · Mathematics · VITEEE
MCQ (Single Correct Answer)
If $$z_1, z_2$$ and $$z_3$$ are the vertices $$A, B$$ and $$C$$ respectively of an isosceles right angled triangle with right angled at $$C$$, then $$\left(z_1-z_3^{\prime}\right)\left(z_2-z_3\right)$$ equals to
If $$\alpha$$ is a non -real fifth root of unity, then the value of $$3^{\left|1+\alpha+\alpha^2+\alpha^{-2}-\alpha^{-1 \mid}\right|}$$, is
If $$\alpha, \beta$$ and $$\gamma$$ are the cube roots of $$P,(P<0)$$, then for any $$x, y$$ and $$z$$ which does not make denominator zero, the expression $$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$$ equals to
If $$x+\frac{1}{x}=1$$ and $$p=x^{4000}+\frac{1}{x^{4000}}$$ and $$q$$ is the digit at unit place in the number $$2^{2 n}+1$$, then the value of $$(p+q)$$ is equal to
Let $$z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots \ldots \ldots$$ 9, then $$\frac{1}{10}\left\{\left|1-z_1\right|\left|1-z_2\right| \ldots .\left|1-z_a\right|\right\}$$ equals to
The condition in order that $$Z_1, Z_2, Z_3$$ are vertices of an isosceles triangle right angled at $$z_2$$, is
If $$(1+i)(2 i+1)(1+3 i) \ldots(1+n i)=x+i y$$, then $$2 \cdot 5 \cdot 10 \ldots\left(1+n^2\right)$$ is equal to
The non-zero solutions of the equation $$z^2+|z|=0$$, where $$z$$ is a complex number, are