Sequences and Series · Mathematics · VITEEE
MCQ (Single Correct Answer)
The sum of the series $1 \cdot 2^2+2 \cdot 4^2+3 \cdot 6^2+\ldots$ upto 10 terms is
Sum of first ' $n$ ' terms of a series $a_1+a_2+\ldots+a_n$ is given by $S_n=\frac{n\left(n^2-1\right)(n+2)}{4}$, then the value of $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=2}^n \frac{1}{a_r}$ is
The sum of $1+\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}+\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots \infty$ is
Let $$a_n$$ be a sequence of numbers which is defined by relation $$a_1=2, \frac{a_n}{a_{n+1}}=3^{-n}$$, then $$\log _2\left(a_{50}\right)$$ is equal to (take $$\log _2 3=1.6$$ )
The value of $$\frac{1}{2}\left(\frac{1}{5}\right)^2+\frac{2}{3}\left(\frac{1}{5}\right)^3+\frac{3}{4}\left(\frac{1}{5}\right)^4+\ldots . . \infty$$ is
If the real numbers $$x, y, z, t$$ be in GP then the value of $$(x^2+y^2+z^2)(y^2+z^2+t^2)$$ is euqal to
The value of $$\frac{4}{1 !}+\frac{11}{2 !}+\frac{22}{3 !}+\frac{37}{4 !}+\frac{56}{5 !}+\ldots \infty$$ is