1
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

Suppose, $$A=\left[\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right]$$ is an adjoint of the matrix $$\left[\begin{array}{rrr}1 & 3 & -3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$$. The value of $$\frac{a_1+b_2+c_3}{b_1 a_2}$$ is

A
3
B
0
C
5
D
4
2
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

For all values of $$\lambda$$, rank of matrix

$$A=\left[\begin{array}{ccc} { }^h C_0 & { }^4 C_3 & { }^5 C_4 \\ \lambda & 8 & 8 \lambda-6 \\ 1+\lambda^2 & 8 \lambda+4 & 2 \lambda+21 \end{array}\right]$$

A
for $$\lambda=2, \rho(A)=1$$
B
for $$\lambda=-1, \rho(A)=1$$
C
for $$\lambda=2, \rho(A)=3$$
D
for $$\lambda=-1, \rho(A)=4$$
3
VITEEE 2021
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$$, then $$\left(A-A^{\prime}\right)$$ is equal to (where, $$A^{\prime}$$ is transpose of matrix $$A$$ )

A
null matrix
B
identity matrix
C
symmetric
D
skew-symmetric
4
VITEEE 2021
MCQ (Single Correct Answer)
+1
-0

If $$A^{-1}=\left[\begin{array}{rr}5 & -2 \\ -7 & 3\end{array}\right]$$ and $$B^{-1}=\frac{1}{2}\left[\begin{array}{rr}9 & -7 \\ -8 & 6\end{array}\right]$$, then $$(A B)^{-1}$$ is equal to

A
$$\left[\begin{array}{rr}47 & -39 / 2 \\ -41 & 17\end{array}\right]$$
B
$$\left[\begin{array}{rr}94 & -82 \\ -39 & 34\end{array}\right]$$
C
$$\left[\begin{array}{rr}-47 & 46 \\ 39 / 2 & -17\end{array}\right]$$
D
$$\left[\begin{array}{rr}-47 & 39 / 2 \\ 46 & -17\end{array}\right]$$
VITEEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12