1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If two different circles $x^2+y^2+2 a x+2 b y+1$ $=0$ and $x^2+y^2+2 b x+2 a y+1=0$ touches each other, then $(a+b)^2$ is equal to

A
1
B
2
C
3
D
4
2
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If the tangent at the point $P$ on the circle $x^2+y^2+2 x+2 y=7$ meets the straight line $3 x-4 y=15$ at the point $Q$ on the $X$-axis, then length of $P Q$ is

A
$3 \sqrt{7}$
B
$4 \sqrt{7}$
C
$2 \sqrt{7}$
D
$\sqrt{7}$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

The line $$a x+b y+c=0$$ will be a tangent to the circle $$x^2+y^2=r^2$$, then

A
$$a^2+b^2=c^2 r^2$$
B
$$c^2=a^2+b^2$$
C
$$c^2=r^2\left(a^2+b^2\right)$$
D
$$\left(c^2+a^2\right)=b^2 r^2$$
4
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

If the tangent at point $$P$$ on the circle $$x^2+y^2+6 x+6 y-2=0$$ meets the straight line $$5 x-2 y+6=0$$ at a point $$Q$$ on $$Y$$-axis, the length of $$P Q$$ is

A
4
B
$$2 \sqrt{5}$$
C
5
D
$$3 \sqrt{5}$$
VITEEE Subjects
EXAM MAP