1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

The complex number $z$ satisfying $z+|z|$ $=1+7 i$, then the value of $|z|^2$ equals

A
625
B
169
C
49
D
25
2
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If $$z_1, z_2$$ and $$z_3$$ are the vertices $$A, B$$ and $$C$$ respectively of an isosceles right angled triangle with right angled at $$C$$, then $$\left(z_1-z_3^{\prime}\right)\left(z_2-z_3\right)$$ equals to

A
$$\left(z_1-z_2\right)^2$$
B
$$\frac{\left(z_1-z_2\right)^2}{2}$$
C
$$-\frac{\left(z_1-z_2\right)^2}{2}$$
D
$$-\left(z_1-z_2\right)^2$$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If $$\alpha$$ is a non -real fifth root of unity, then the value of $$3^{\left|1+\alpha+\alpha^2+\alpha^{-2}-\alpha^{-1 \mid}\right|}$$, is

A
9
B
1
C
11/3
D
11
4
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If $$\alpha, \beta$$ and $$\gamma$$ are the cube roots of $$P,(P<0)$$, then for any $$x, y$$ and $$z$$ which does not make denominator zero, the expression $$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$$ equals to

A
$$\omega, 1$$
B
$$\omega, \omega^2$$
C
$$\omega^2, 1$$
D
$$1, \omega, \omega^2$$
VITEEE Subjects
EXAM MAP