1
IAT (IISER) 2023
MCQ (Single Correct Answer)
+4
-1

Let $M$ be a $3 \times 3$ matrix with real entries such that

$$ \left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: M\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]\right\}=\left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: x_1+x_2=0=x_2+x_3\right\} $$

What is the value of the determinant of M ?

A
0
B
1
C
2
D
3
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
A
0
B
1
C
-1
D
$(-1)^k$
3
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
A
2020
B
$a^{2020}-b a^{2019}+\cdots-b^{2019} a+b^{2020}$
C
$2020^3$
D
1
4
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
A
$7^3$
B
$3^7$
C
$21^3$
D
$7^6$
IAT (IISER) Subjects
EXAM MAP