1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
A
0
B
1
C
-1
D
$(-1)^k$
2
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
A
2020
B
$a^{2020}-b a^{2019}+\cdots-b^{2019} a+b^{2020}$
C
$2020^3$
D
1
3
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
A
$7^3$
B
$3^7$
C
$21^3$
D
$7^6$
IAT (IISER) Subjects
EXAM MAP