Definite Integration · Mathematics · IAT (IISER)
MCQ (Single Correct Answer)
1
Let $I=\int_{e^{-\pi / 2}}^{e^{\pi / 2}}\left(\sin ^2(\log (x))+\sin \left(\log \left(x^2\right)\right)\right) d x$. What is the value of $I$ ?
IAT (IISER) 2024
2
Let $f: \mathbf{R} \rightarrow(0, \infty)$ be a continuous decreasing function. Suppose $f(0), \dot{f}(1), \ldots, f(10)$ are in a geometric progression with common ratio $\frac{1}{5}$. In which of the following intervals does the value of $\int_0^{10} f(x) d x$ lie?
IAT (IISER) 2023
3
Let $f:(-1,2) \rightarrow \mathbf{R}$ be a differentiable function such that $f^{\prime}(x)=\frac{2}{x^2-5}$ and $f(0)=0$. Then in which of the following intervals does $f(1)$ lie?
IAT (IISER) 2023
4
If $p(t)=\frac{t(t-1) \cdots(t-2019)}{2019!}$, then the value of
$$ \int_0^1\left(\frac{1}{t+1}+\frac{1}{t+2}+\cdots+\frac{1}{t+2020}\right) p(-t-1) d t $$
is:
IAT (IISER) 2020
5
$F(x)=\int_0^{e^x}\left(t^3+2 t^2-t-2\right) d t$, then for how many real numbers $x$ does $F^{\prime}(x)=0$ ?
IAT (IISER) 2020