Definite Integration · Mathematics · IAT (IISER)

Start Practice

MCQ (Single Correct Answer)

1
Let $I=\int_{e^{-\pi / 2}}^{e^{\pi / 2}}\left(\sin ^2(\log (x))+\sin \left(\log \left(x^2\right)\right)\right) d x$. What is the value of $I$ ?
IAT (IISER) 2024
2
Let $f: \mathbf{R} \rightarrow(0, \infty)$ be a continuous decreasing function. Suppose $f(0), \dot{f}(1), \ldots, f(10)$ are in a geometric progression with common ratio $\frac{1}{5}$. In which of the following intervals does the value of $\int_0^{10} f(x) d x$ lie?
IAT (IISER) 2023
3
Let $f:(-1,2) \rightarrow \mathbf{R}$ be a differentiable function such that $f^{\prime}(x)=\frac{2}{x^2-5}$ and $f(0)=0$. Then in which of the following intervals does $f(1)$ lie?
IAT (IISER) 2023
4
For a natural number $n$, let $C_n$ be the curve in the $X Y$-plane given by $y=x^n$, where $0 \leq$ $x \leq 1$. Let $A_n$ denote the area of the region bounded between $C_n$ and $C_n+1$. Then the largest value of $A_n$ is
IAT (IISER) 2022
5
Let $f$ be a continuous function on $[0,1]$ and $F$ be its antiderivative. If $F(0)=1$ and $\int_0^1 f(x) d x=1$, then $F(1)$ is
IAT (IISER) 2022
6

The value of the integral

$$ \int_1^{100} \frac{[x]}{x} d x $$

where $[x]$ is the greatest integer less than or equal to $x$ for any real number $x$, is

IAT (IISER) 2022
7

If $p(t)=\frac{t(t-1) \cdots(t-2019)}{2019!}$, then the value of

$$ \int_0^1\left(\frac{1}{t+1}+\frac{1}{t+2}+\cdots+\frac{1}{t+2020}\right) p(-t-1) d t $$

is:

IAT (IISER) 2020
8

$F(x)=\int_0^{e^x}\left(t^3+2 t^2-t-2\right) d t$, then for how many real numbers $x$ does $F^{\prime}(x)=0$ ?

IAT (IISER) 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12