Matrices and Determinants · Mathematics · IAT (IISER)
MCQ (Single Correct Answer)
1
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
IAT (IISER) 2020
2
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
IAT (IISER) 2020