1
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
A
2020
B
$a^{2020}-b a^{2019}+\cdots-b^{2019} a+b^{2020}$
C
$2020^3$
D
1
2
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
A
$7^3$
B
$3^7$
C
$21^3$
D
$7^6$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12