1
GATE PI 2013
MCQ (Single Correct Answer)
+2
-0.6
In orthogonal turning of a bar of $$100$$ $$mm$$ diameter with a feed of $$0.25$$ $$min/rev,$$ depth of cut of $$4$$ $$mm$$ and cutting velocity of $$90$$ $$m/min,$$ it is observed that the main (tangential) cutting force is prependicular to the friction force acting at the chip-tool interface. The main (tangential) cutting force is $$1500$$ $$N.$$
The normal force acting at the chip-tool interface in $$N$$ is
2
GATE PI 2013
MCQ (Single Correct Answer)
+2
-0.6
In orthogonal turning of a bar of $$100$$ $$mm$$ diameter with a feed of $$0.25$$ $$min/rev,$$ depth of cut of $$4$$ $$mm$$ and cutting velocity of $$90$$ $$m/min,$$ it is observed that the main (tangential) cutting force is prependicular to the friction force acting at the chip-tool interface. The main (tangential) cutting force is $$1500$$ $$N.$$
The orthogonal rake angle of the cutting tool in degree is
3
GATE PI 2013
MCQ (Single Correct Answer)
+2
-0.6
Following data refers to an automat and a center lathe, which are being compared to machine a batch of parts in a manufacturing shop
Automat will be economical if the batch size exceeds
4
GATE PI 2013
MCQ (Single Correct Answer)
+2
-0.6
Details pertaining to an orthogonal metal cutting process are given below.
Chip thickness ratio $$0.4$$
Under formed thickness $$0.6mm$$
Rake angle $$ + {10^0}$$
Cutting speed $$2.5m/s$$
Mean thickness of primary shear zone $$25microns$$
The shear strain rate in $${s^{ - 1}}$$ during the process is
Questions Asked from Metal Cutting (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE PI Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Thermodynamics
Casting
Joining of Materials
Metal Forming
Machine Tools and Machining
Metrology
Industrial Engineering