A line passes through the point $$( - 1,1)$$ and makes an angle $${\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ in the positive direction of x-axis. If this line meets the curve $${x^2} = 4y - 9$$ at A and B, then |AB| is equal to
Two circles $${S_1} = p{x^2} + p{y^2} + 2g'x + 2f'y + d = 0$$ and $${S_2} = {x^2} + {y^2} + 2gx + 2fy + d' = 0$$ have a common chord PQ. The equation of PQ is
Let $$P(3\sec \theta ,2\tan \theta )$$ and $$Q(3\sec \phi ,2\tan \phi )$$ be two points on $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ such that $$\theta + \phi = {\pi \over 2},0 < \theta ,\phi < {\pi \over 2}$$. Then the ordinate of the point of intersection of the normals at P and Q is
Let P be a point on (2, 0) and Q be a variable point on (y $$-$$ 6)2 = 2(x $$-$$ 4). Then the locus of mid-point of PQ is