1
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$f(x) = {(x - 2)^{17}}{(x + 5)^{24}}$$. Then

A
f does not have a critical point at x = 2
B
f has a minimum at x = 2
C
f has neither a maximum nor a minimum at x = 2
D
f has a minimum at x = 2
2
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$, $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c $$ is unit vector perpendicular to $$\overrightarrow a $$ and coplanar with $$\overrightarrow a $$ and $$\overrightarrow b $$, then unit vector $$\overrightarrow d $$ perpendicular to both $$\overrightarrow a $$ and $$\overrightarrow c $$ is

A
$$ \pm {1 \over {\sqrt 6 }}\left( {2\widehat i - \widehat j + \widehat k} \right)$$
B
$$ \pm {1 \over {\sqrt 2 }}\left( {\widehat j + \widehat k} \right)$$
C
$$ \pm {1 \over {\sqrt 6 }}\left( {\widehat i - 2\widehat j + \widehat k} \right)$$
D
$$ \pm {1 \over {\sqrt 2 }}\left( {\widehat j - \widehat k} \right)$$
3
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If the equation of one tangent to the circle with centre at (2, $$-$$1) from the origin is 3x + y = 0, then the equation of the other tangent through the origin is

A
$$3x - y = 0$$
B
$$x + 3y = 0$$
C
$$x - 3y = 0$$
D
$$x + 2y = 0$$
4
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Area of the figure bounded by the parabola $${y^2} + 8x = 16$$ and $${y^2} - 24x = 48$$ is

A
$${{11} \over 9}$$ sq. unit
B
$${{32} \over 3}\sqrt 6 $$ sq. unit
C
$${{16} \over 3}$$ sq. unit
D
$${{24} \over 5}$$ sq. unit
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12