A particle is moving in an elliptical orbit as shown in figure. If $$\overrightarrow p $$, $$\overrightarrow L $$ and $$\overrightarrow r $$ denote the linear momentum, angular momentum and position vector of the particle (from focus O) respectively at a point A, then the direction of $$\overrightarrow \alpha $$ = $$\overrightarrow p $$ $$\times$$ $$\overrightarrow L $$ is along.
A particle is subjected to two simple harmonic motions in the same direction having equal amplitudes and equal frequency. If the resultant amplitude is equal to the amplitude of the individual motion, the phase difference ($$\delta$$) between the two motion is
A body of mass m is thrown with velocity u from the origin of a co-ordinate axes at an angle $$\theta$$ with the horizon. The magnitude of the angular momentum of the particle about the origin at time t when it is at the maximum height of the trajectory is proportional to
Three particles, each of mass 'm' grams situated at the vertices of an equilateral $$\Delta$$ABC of side 'a' cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC in g-cm2 units will be