1
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let f be a differentiable function with $$\mathop {\lim }\limits_{x \to \infty } f(x) = 0.$$ If $$y' + yf'(x) - f(x)f'(x) = 0$$, $$\mathop {\lim }\limits_{x \to \infty } y(x) = 0$$, then (where $$y \equiv {{dy} \over {dx}})$$
A
$$y + 1 = {e^{f(x)}} + f(x)$$
B
$$y - 1 = {e^{f(x)}} + f(x)$$
C
$$y + 1 = {e^{ - f(x)}} + f(x)$$
D
$$y - 1 = {e^{ - f(x)}} + f(x)$$
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$x\sin \left( {{y \over x}} \right)dy = \left[ {y\sin \left( {{y \over x}} \right) - x} \right]dx,\,x > 0$$ and $$y(1) = {\pi \over 2}$$, then the value of $$\cos \left( {{y \over x}} \right)$$ is
A
1
B
log x
C
e
D
0
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$f(x) = 1 - \sqrt {({x^2})} $$, where the square root is to be taken positive, then
A
f has no extrema at x = 0
B
f has minima at x = 0
C
f has maxima at x = 0
D
f' exists at 0
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If the function $$f(x) = 2{x^3} - 9a{x^2} + 12{a^2}x + 1$$ [a > 0] attains its maximum and minimum at p and q respectively such that p2 = q, then a is equal to
A
2
B
$${1 \over 2}$$
C
$${1 \over 4}$$
D
3
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12