1
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If c0, c1, c2, ......, c15 are the binomial coefficients in the expansion

of (1 + x)15, then the value of $${{{c_1}} \over {{c_0}}} + 2{{{c_2}} \over {{c_1}}} + 3{{{c_3}} \over {{c_2}}} + ... + 15{{{c_{15}}} \over {{c_{14}}}}$$ is
A
1240
B
120
C
124
D
140
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let A = $$\left( {\matrix{ {3 - t} \cr { - 1} \cr 0 \cr } \matrix{ {} \cr {} \cr {} \cr } \,\matrix{ 1 \cr {3 - t} \cr { - 1} \cr } \matrix{ {} \cr {} \cr {} \cr } \matrix{ 0 \cr 1 \cr 0 \cr } } \right)$$ and det A = 5, then
A
t = 1
B
t = 2
C
t = $$ - $$ 1
D
t = $$ - $$ 2
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$A = \left[ {\matrix{ {12} & {24} & 5 \cr x & 6 & 2 \cr { - 1} & { - 2} & 3 \cr } } \right]$$. The value of x for which the matrix A is not invertible is
A
6
B
12
C
3
D
2
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$A = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$ be a 2 $$ \times $$ 2 real matrix with det A = 1. If the equation det (A $$ - $$ $$\lambda $$I2) = 0 has imaginary roots (I2 be the identity matrix of order 2), then
A
(a + d)2 < 4
B
(a + d)2 = 4
C
(a + d)2 > 4
D
(a + d)2 = 16
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12