1
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$\phi (x) = f(x) + f(1 - x)$$ and $$f(x) < 0$$ in [0, 1], then
A
$$\phi $$ is monotonic increasing in $$\left[ {0,{1 \over 2}} \right]$$ and monotonic decreasing in $$\left[ {{1 \over 2}, 1} \right]$$
B
$$\phi $$ is monotonic increasing in $$\left[ {{1 \over 2}, 1} \right]$$ and monotonic decreasing in $$\left[ {0, {1 \over 2}} \right]$$
C
$$\phi $$ is neither increasing nor decreasing in any sub-interval of [0, 1]
D
$$\phi $$ is increasing in [0, 1]
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {{{f(x)\phi '(x) + \phi (x)f'(x)} \over {(f(x)\phi (x) + 1)\sqrt {f(x)\phi (x) - 1} }}dx = } $$
A
$${\sin ^{ - 1}} = \sqrt {{{f(x)} \over {\phi (x)}}} + c$$
B
$${\cos ^{ - 1}}\sqrt {{{(f(x))}^2} - {{(\phi (x))}^2}} + c$$
C
$$\sqrt 2 {\tan ^{ - 1}}\sqrt {{{f(x)\phi (x) - 1} \over 2}} + c$$
D
$$\sqrt 2 {\tan ^{ - 1}}\sqrt {{{f(x)\phi (x) + 1} \over 2}} + c$$
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The value of

$$\sum\limits_{n = 1}^{10} {} \int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}} x\,dx + \sum\limits_{n = 1}^{10} {} \int\limits_{2n}^{2n + 1} {{{\sin }^{27}}} x\,dx$$ is equal to
A
27
B
54
C
$$ - $$54
D
0
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int\limits_0^2 {[{x^2}]} \,dx$$ is equal to
A
1
B
$$5 - \sqrt 2 - \sqrt 3 $$
C
$$3 - \sqrt 2 $$
D
8/3
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12