1
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If the tangent to the curve y2 = x3 at (m2, m3) is also a normal to the curve at (m2, m3), then the value of mM is
A
$$ - {1 \over 9}$$
B
$$ - {2 \over 9}$$
C
$$ - {1 \over 3}$$
D
$$ - {4 \over 9}$$
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $${x^2} + {y^2} = {a^2}$$, then $$\int\limits_0^a {\sqrt {1 + {{\left( {{{dy} \over {dx}}} \right)}^2}} dx = } $$
A
2$$\pi a$$
B
$$\pi a$$
C
$${1 \over 2}\pi a$$
D
$${1 \over 4}\pi a$$
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let f, be a continuous function in [0, 1], then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{j = 0}^n {{1 \over n}} f\left( {{j \over n}} \right)$$ is
A
$${1 \over 2}\int\limits_0^{{1 \over 2}} {f(x)\,} dx$$
B
$$\int\limits_{{1 \over 2}}^1 {f(x)\,} dx$$
C
$$\int\limits_0^1 {f(x)\,} dx$$
D
$$\int\limits_0^{{1 \over 2}} {f(x)\,} dx$$
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let f be a differentiable function with $$\mathop {\lim }\limits_{x \to \infty } f(x) = 0.$$ If $$y' + yf'(x) - f(x)f'(x) = 0$$, $$\mathop {\lim }\limits_{x \to \infty } y(x) = 0$$, then (where $$y \equiv {{dy} \over {dx}})$$
A
$$y + 1 = {e^{f(x)}} + f(x)$$
B
$$y - 1 = {e^{f(x)}} + f(x)$$
C
$$y + 1 = {e^{ - f(x)}} + f(x)$$
D
$$y - 1 = {e^{ - f(x)}} + f(x)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12