1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.

A
$$\frac{3}{21}$$
B
$$\frac{17}{21}$$
C
$$\frac{13}{21}$$
D
$$\frac{11}{21}$$
2
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1+2 e^{-x}}{1-2 e^{-x}} d x=$$

A
$$x+\log \left(1-2 e^{-x}\right)+c$$
B
$$x+2 \log \left(1-2 e^{-x}\right)+c$$
C
$$\log \left(1-2 e^{-x}\right)+c$$
D
$$x-\log \left(1-2 e^{-x}\right)+c$$
3
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the volume of the parallelopiped whose conterminus edges are along the vectors $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ is 12, then the volume of the tetrahedron whose conterminus edges are $$\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$$ and $$c+a$$ is

A
12 (units)$${ }^3$$
B
24 (units)$${ }^3$$
C
4 (units)$$^3$$
D
6 (units)$${ }^3$$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $$f(x)=\frac{x+1}{9 x+x^3}$$ is

A
discontinuous at exactly two points
B
discontinuous at exactly one point
C
continuous for all real values of $$x$$
D
discontinuous at exactly three points
MHT CET Papers
EXAM MAP