1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $[r]$ denote the largest integer not exceeditio $r$ and the roots of the equation $3 x^2+6 x+5+\alpha\left(x^2+2 x+2\right)=0$ are complex number when ever $\alpha>L$ and $\alpha
A
$L$
B
$M$
C
$L+M$
D
$M-L$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
For any real value of $x$. If $\frac{11 x^2+12 x+6}{x^2+4 x+2} \notin(a, b)$, then the value $x$ for which $\frac{11 x^2+12 x+6}{x^2+4 x+2}=b-a+3$ is
A
$\frac{3}{4}$
B
$\frac{3}{2}$
C
2
D
$-\frac{1}{2}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the roots of $\sqrt{\frac{1-y}{y}}+\sqrt{\frac{y}{1-y}}=\frac{5}{2}$ are $\alpha$ and $\beta(\beta>\alpha)$ and the equation $(\alpha+\beta) x^4-25 \alpha \beta x^2+(\gamma+\beta-\alpha)=0$ has real roots, then a possible value of $\gamma$ is
A
$\frac{1}{2}$
B
4
C
$2 \pi$
D
$\sqrt{e+13}$
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the roots of the equation $x^3+a x^2+b x+c=0$ are in arithmetic progression. Then,
A
$a^3-3 a b+c=0$
B
$9 a b=2 a^3+27 c$
C
$a^2-2 b c+c=0$
D
$3 a b-3 c-a^3=0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12