1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\left|\begin{array}{ccc}a & b & c \\ a^2 & b^2 & c^2 \\ 1 & 1 & 1\end{array}\right|$ is not equal to
A
$\left|\begin{array}{ccc}a+1 & b+1 & c+1 \\ a^2+1 & b^2+1 & c^2+1 \\ 1 & 1 & 1\end{array}\right|$
B
$\left|\begin{array}{ccc}a-b & b-c & c \\ a^2-b^2 & b^2-c^2 & c^2 \\ 0 & 0 & 1\end{array}\right|$
C
$\left|\begin{array}{ccc}a(a+1) & b(b+1) & c(c+1) \\ a+1 & b+1 & c+1 \\ -1 & -1 & -1\end{array}\right|$
D
$\left|\begin{array}{ccc}a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ 2 & 2 & 2\end{array}\right|$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $A, B, C, D$ and $E$ be $n \times n$ matrices each with non-zero determinant. If $A B C D E=I$, then $C^{-1}=$
A
$E^{-1} D^{-1} B^{-1} A^{-1}$
B
$D E A B$
C
$A^{-1} B^{-1} D^{-1} E^{-1}$
D
$A B D E$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[a_{i j}\right], 1 \leq i, j \leq n$ with $n \geq 2$ and $a_{i j}=i+j$ is a matrix, then the rank of $A$ is
A
0
B
1
C
2
D
4
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z_1=10+6 i, z_2=4+6 i$ and $z$ is any complex number such that the argument of $\frac{\left(z-z_1\right)}{\left(z-z_2\right)}$ is $\frac{\pi}{4}$,
A
$|z-7-9 i|=3 \sqrt{2}$
B
$|z-7-9 i|=2 \sqrt{2}$
C
$|z-3+9 i|=3 \sqrt{2}$
D
$|z+3-9 i|=2 \sqrt{2}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12