1
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If the function $$f(x)$$, defined below, is continuous on the interval $$[0,8]$$, then $$f(x)=\left\{\begin{array}{cc}x^2+a x+b & , \quad 0 \leq x < 2 \\ 3 x+2, & 2 \leq x \leq 4 \\ 2 a x+5 b & , 4 < x \leq 8\end{array}\right.$$

A
$$a=3, b=-2$$
B
$$a=-3, b=2$$
C
$$a=-3, b=-2$$
D
$$a=3, b=2$$
2
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)$$, defined below, is continuous at $$x=4$$, then

$$f(x) = \left\{ {\matrix{ {{{x - 4} \over {|x - 4|}} + a} & , & {x < 4} \cr {a + b} & , & {x = 4} \cr {{{x - 4} \over {|x - 4|}} + b} & , & {x > 4} \cr } } \right.$$

A
$$a=0$$ and $$b=0$$
B
$$a=1$$ and $$b=1$$
C
$$a=-1$$ and $$b=1$$
D
$$a=1$$ and $$b=-1$$
3
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=2x^2+3x-5$$, then the value of $$f'(0)+3f'(-1)$$ is equal to

A
1
B
0
C
3
D
2
4
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$y=\left(1+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)\left(1+\frac{3}{x}\right) \ldots\left(1+\frac{n}{x}\right)$$ and $$x \neq 0$$. When $$x=-1, \frac{d y}{d x}$$ is equal to

A
$$n !$$
B
$$(n-1) !$$
C
$$(-1)^n(n-1)!$$
D
$$(-1)^n n!$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12