If the lines, $$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}$$ and $$\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$$ are coplanar, then $$\sin ^{-1}(\sin \lambda)+\cos ^{-1}(\cos \lambda)$$ is equal to
If a = (1, 1, 0) and b = (1, 1, 1), then unit vector in the plane of a and b and perpendicular to a is
The line passing through $$(1,1,-1)$$ and parallel to the vector $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ meets the line $$\frac{x-3}{-1}=\frac{y+2}{5}=\frac{z-2}{-4}$$ at $$A$$ and the plane $$2 x-y+2 z+7=0$$ at $$B$$. Then $$A B$$ is equal to
Let $$\mathbf{a}=\hat{\mathbf{i}}$$ and $$\mathbf{b}=\hat{\mathbf{j}}$$, the point of intersection of the lines $$\mathbf{r} \times \mathbf{a}=\mathbf{b} \times \mathbf{a}$$ and $$\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$$ is