Let $$\mathbf{u}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{v}=-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$$ and $$\mathbf{w}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. Then which of the following statement is true?
If the lines, $$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}$$ and $$\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$$ are coplanar, then $$\sin ^{-1}(\sin \lambda)+\cos ^{-1}(\cos \lambda)$$ is equal to
If a = (1, 1, 0) and b = (1, 1, 1), then unit vector in the plane of a and b and perpendicular to a is
The line passing through $$(1,1,-1)$$ and parallel to the vector $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ meets the line $$\frac{x-3}{-1}=\frac{y+2}{5}=\frac{z-2}{-4}$$ at $$A$$ and the plane $$2 x-y+2 z+7=0$$ at $$B$$. Then $$A B$$ is equal to