In $$\triangle A B C$$, medians $$A D$$ and $$B E$$ are drawn. If $$A D=4, \angle D A B=\frac{\pi}{6}$$ and $$\angle A B E=\frac{\pi}{3}$$, then the area of $$\triangle A B C$$ is
In a $$\triangle A B C, 2 \Delta^2=\frac{a^2 b^2 c^2}{a^2+b^2+c^2}$$, then the triangle is
The sides of a triangle inscribed in a given circle subtend angles $$\alpha, \beta, \gamma$$ at the center. The minimum value of the AM of $$\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)$$ and $$\cos \left(\gamma+\frac{\pi}{2}\right)$$ is equal to
The position vectors of the points $$A$$ and $$B$$ with respect to $$O$$ are $$2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. The length of the internal bisector of $$\angle B O A$$ of $$\triangle A O B$$ is (take proportionality constant is 2)