1
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
If a random variable $$X$$ satisfies the poission's distribution with a mean value of $$2,$$ then the probability that $$X > 2$$ is
A
$$2{e^{ - 2}}$$
B
$$1 - 2{e^{ - 2}}$$
C
$$3{e^{ - 2}}$$
D
$$1 - 3{e^{ - 2}}$$
2
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
The integral $$\,\,{1 \over {\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {{e^{{{ - {x^2}} \over 2}}}} dx\,\,$$ is equal to
A
$${1 \over 2}$$
B
$${1 \over {\sqrt 2 }}$$
C
$$1$$
D
$$\infty $$
3
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
If $$f\left( x \right) = \sin \left| x \right|\,\,$$ then the value of $${{df} \over {dx}}\,\,$$ at $$\,\,x = {{ - \pi } \over 4}\,\,$$ is
A
$$0$$
B
$${1 \over {\sqrt 2 }}$$
C
$$-{1 \over {\sqrt 2 }}$$
D
$$1$$
4
GATE PI 2010
MCQ (Single Correct Answer)
+1
-0.3
If $$(1, 0, -1)$$$${}^T$$ is an eigen vector of the following matrix $$\left[ {\matrix{ 1 & { - 1} & 0 \cr { - 1} & 2 & { - 1} \cr 0 & { - 1} & 1 \cr } } \right]$$ then the corresponding eigen value is
A
$$1$$
B
$$2$$
C
$$3$$
D
$$5$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12