1
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
Two white and two black balls, kept in two bins, are arranged in four ways as shown below. In each arrangement, a bin has to be chosen randomly and only one ball needs to be picked randomly from the chosen bin. Which one of the following arrangements has the highest probability for getting a while ball picked?
A
GATE PI 2010 Engineering Mathematics - Probability and Statistics Question 11 English Option 1
B
GATE PI 2010 Engineering Mathematics - Probability and Statistics Question 11 English Option 2
C
GATE PI 2010 Engineering Mathematics - Probability and Statistics Question 11 English Option 3
D
GATE PI 2010 Engineering Mathematics - Probability and Statistics Question 11 English Option 4
2
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
If a random variable $$X$$ satisfies the poission's distribution with a mean value of $$2,$$ then the probability that $$X > 2$$ is
A
$$2{e^{ - 2}}$$
B
$$1 - 2{e^{ - 2}}$$
C
$$3{e^{ - 2}}$$
D
$$1 - 3{e^{ - 2}}$$
3
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
The integral $$\,\,{1 \over {\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {{e^{{{ - {x^2}} \over 2}}}} dx\,\,$$ is equal to
A
$${1 \over 2}$$
B
$${1 \over {\sqrt 2 }}$$
C
$$1$$
D
$$\infty $$
4
GATE PI 2010
MCQ (Single Correct Answer)
+2
-0.6
If $$f\left( x \right) = \sin \left| x \right|\,\,$$ then the value of $${{df} \over {dx}}\,\,$$ at $$\,\,x = {{ - \pi } \over 4}\,\,$$ is
A
$$0$$
B
$${1 \over {\sqrt 2 }}$$
C
$$-{1 \over {\sqrt 2 }}$$
D
$$1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12