1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

The volume of the parallelopiped whose edges are represented by $\mathbf{a}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$, $\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is

A
5
B
7
C
9
D
10
2
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

A unit vector perpendicular to both the vectors $$\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+\hat{\mathbf{k}}$$ is

A
$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
B
$$\frac{-\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
C
$$\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
D
$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

Let $$a, b$$ and $$c$$ be three unit vectors such that $$a \times(b \times c)=\frac{\sqrt{3}}{2}(b+c)$$. If $$b$$ is not parallel to $$c$$, then the angle between $$a$$ and $$b$$ is

A
$$\frac{3 \pi}{4}$$
B
$$\frac{\pi}{2}$$
C
$$\frac{2 \pi}{3}$$
D
$$\frac{5 \pi}{6}$$
4
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

A unit vector perpendicular to both the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}$$ and $$\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ is

A
$$\frac{-\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
B
$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{3}$$
C
$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
D
$$\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
VITEEE Subjects
EXAM MAP