1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

Sum of first ' $n$ ' terms of a series $a_1+a_2+\ldots+a_n$ is given by $S_n=\frac{n\left(n^2-1\right)(n+2)}{4}$, then the value of $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=2}^n \frac{1}{a_r}$ is

A
4
B
2
C
$\frac{1}{4}$
D
$\frac{1}{2}$
2
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

The sum of $1+\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}+\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots \infty$ is

A
$\sqrt{3}$
B
$\frac{1}{\sqrt{2}}$
C
$\sqrt{2}$
D
$2^{\frac{3}{2}}$
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

Let $$a_n$$ be a sequence of numbers which is defined by relation $$a_1=2, \frac{a_n}{a_{n+1}}=3^{-n}$$, then $$\log _2\left(a_{50}\right)$$ is equal to (take $$\log _2 3=1.6$$ )

A
1960
B
1275
C
1961
D
1276
4
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

The value of $$\frac{1}{2}\left(\frac{1}{5}\right)^2+\frac{2}{3}\left(\frac{1}{5}\right)^3+\frac{3}{4}\left(\frac{1}{5}\right)^4+\ldots . . \infty$$ is

A
$$\frac{1}{4}+\log _e\left(\frac{4}{5}\right)$$
B
$$\frac{1}{20}+\log _e\left(\frac{4}{5}\right)$$
C
$$\frac{1}{20}-\log _e\left(\frac{4}{5}\right)$$
D
$$\frac{1}{20}+\log _e\left(\frac{6}{5}\right)$$
VITEEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12