1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

Let $f(x)=a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0$ be a polynomial. Suppose that $f(0)=0$,

$$ \left.\left.\frac{d f}{d x}\right]_{x=0}=1, \frac{d^2 f}{d x^2}\right]_{x=0}=4 $$

and

$$ \frac{d^3 f}{d x^3}=\frac{d^5 f}{d x^5} $$

Then $f(5)=$

A
25
B
35
C
55
D
105
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $a$ be a nonzero real number and $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function such that $f^{\prime}(x)>0$ for all $x \in R$. Consider $g(x)=f\left(2 a^2 x-a x^2\right)$. Then $g$ has
A
Local maxima at $x=a$ if $a>0$
B
Local maxima at $x=a$ if $a<0$
C
Local minima at $x=a$ if $a>0$
D
A point of inflection at $x=a$
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
The function given by $f(x)=2 x^3-15 x^2+36 x-5$ is
A
Increasing on the interval $(0,2)$
B
Decreasing on the interval $(-3,0)$
C
Increasing on the interval $(2,3)$
D
Decreasing on the interval $(3, \infty)$
IAT (IISER) Subjects
EXAM MAP