1
IAT (IISER) 2023
MCQ (Single Correct Answer)
+4
-1
Let $\alpha$ be a real number. What is the total number of distinct point(s) of intersection between the parabola $y=x^2+4 x \sin \alpha+6$ and the pair of lines $y^2=1$ ?
A
Zero
B
One
C
Two
D
Four
2
IAT (IISER) 2023
MCQ (Single Correct Answer)
+4
-1
Let $f(x)=\sin (3 x), x \in\left[0, \frac{\pi}{2}\right]$. Which of the following statements is true
A
$f$ is increasing on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
B
$f$ is decreasing on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
C
$f$ is increasing on $\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ and decreasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.
D
$f$ is decreasing on $\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ and increasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

Let $f(x)=a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0$ be a polynomial. Suppose that $f(0)=0$,

$$ \left.\left.\frac{d f}{d x}\right]_{x=0}=1, \frac{d^2 f}{d x^2}\right]_{x=0}=4 $$

and

$$ \frac{d^3 f}{d x^3}=\frac{d^5 f}{d x^5} $$

Then $f(5)=$

A
25
B
35
C
55
D
105
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $a$ be a nonzero real number and $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function such that $f^{\prime}(x)>0$ for all $x \in R$. Consider $g(x)=f\left(2 a^2 x-a x^2\right)$. Then $g$ has
A
Local maxima at $x=a$ if $a>0$
B
Local maxima at $x=a$ if $a<0$
C
Local minima at $x=a$ if $a>0$
D
A point of inflection at $x=a$
IAT (IISER) Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12