1
VITEEE 2024
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$, then $\left(B B^T A\right)^5$ is equal to

A
$\left[\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right]$
B
$\frac{1}{2}\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
C
$\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
D
$\left[\begin{array}{ll}5 & 1 \\ 0 & 1\end{array}\right]$
2
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

If matrix $$A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$$ is given to be symmetric, then the value of $$a b$$ is

A
1
B
0
C
$$-$$1
D
9/4
3
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

The determinant of the matrix $$\left[\begin{array}{ccc}1 & 4 & 8 \\ 1 & 9 & 27 \\ 1 & 16 & 64\end{array}\right]$$ is

A
13
B
208
C
52
D
104
4
VITEEE 2023
MCQ (Single Correct Answer)
+1
-0

Suppose, $$A=\left[\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right]$$ is an adjoint of the matrix $$\left[\begin{array}{rrr}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$$. The value of $$\frac{a_1+b_2+c_3}{b_1 a_2}$$ is

A
3
B
0
C
5
D
4
VITEEE Subjects
EXAM MAP