1
IAT (IISER) 2023
MCQ (Single Correct Answer)
+4
-1
Let $f: \mathbf{R} \rightarrow(0, \infty)$ be a continuous decreasing function. Suppose $f(0), \dot{f}(1), \ldots, f(10)$ are in a geometric progression with common ratio $\frac{1}{5}$. In which of the following intervals does the value of $\int_0^{10} f(x) d x$ lie?
A
$(0,2 f(0))$
B
$(4 f(0), 6 f(0))$
C
$(8 f(0), 10 f(0))$
D
$(12 f(0), 14 f(0))$
2
IAT (IISER) 2023
MCQ (Single Correct Answer)
+4
-1
Let $f:(-1,2) \rightarrow \mathbf{R}$ be a differentiable function such that $f^{\prime}(x)=\frac{2}{x^2-5}$ and $f(0)=0$. Then in which of the following intervals does $f(1)$ lie?
A
$(-\infty, 0)$
B
$(0,2)$
C
$(2,4)$
D
$(4, \infty)$
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
For a natural number $n$, let $C_n$ be the curve in the $X Y$-plane given by $y=x^n$, where $0 \leq$ $x \leq 1$. Let $A_n$ denote the area of the region bounded between $C_n$ and $C_n+1$. Then the largest value of $A_n$ is
A
$1 / 2$
B
$1 / 3$
C
$1 / 6$
D
$1 / 12$
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $f$ be a continuous function on $[0,1]$ and $F$ be its antiderivative. If $F(0)=1$ and $\int_0^1 f(x) d x=1$, then $F(1)$ is
A
0
B
$1 / 2$
C
1
D
2
IAT (IISER) Subjects
EXAM MAP