1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
For a natural number $n$, let $C_n$ be the curve in the $X Y$-plane given by $y=x^n$, where $0 \leq$ $x \leq 1$. Let $A_n$ denote the area of the region bounded between $C_n$ and $C_n+1$. Then the largest value of $A_n$ is
A
$1 / 2$
B
$1 / 3$
C
$1 / 6$
D
$1 / 12$
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $f$ be a continuous function on $[0,1]$ and $F$ be its antiderivative. If $F(0)=1$ and $\int_0^1 f(x) d x=1$, then $F(1)$ is
A
0
B
$1 / 2$
C
1
D
2
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

The value of the integral

$$ \int_1^{100} \frac{[x]}{x} d x $$

where $[x]$ is the greatest integer less than or equal to $x$ for any real number $x$, is

A
$\log \left(\frac{100^{98}}{98!}\right)$
B
$\log \left(\frac{100^{99}}{98!}\right)$
C
$\log \left(\frac{100^{98}}{99!}\right)$
D
$\log \left(\frac{100^{99}}{99!}\right)$
4
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1

If $p(t)=\frac{t(t-1) \cdots(t-2019)}{2019!}$, then the value of

$$ \int_0^1\left(\frac{1}{t+1}+\frac{1}{t+2}+\cdots+\frac{1}{t+2020}\right) p(-t-1) d t $$

is:

A
$2019^2$
B
2019
C
$2020^2$
D
2020
IAT (IISER) Subjects
EXAM MAP