1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
For a natural number $n$, let $C_n$ be the curve in the $X Y$-plane given by $y=x^n$, where $0 \leq$ $x \leq 1$. Let $A_n$ denote the area of the region bounded between $C_n$ and $C_n+1$. Then the largest value of $A_n$ is
A
$1 / 2$
B
$1 / 3$
C
$1 / 6$
D
$1 / 12$
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $f$ be a continuous function on $[0,1]$ and $F$ be its antiderivative. If $F(0)=1$ and $\int_0^1 f(x) d x=1$, then $F(1)$ is
A
0
B
$1 / 2$
C
1
D
2
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

The value of the integral

$$ \int_1^{100} \frac{[x]}{x} d x $$

where $[x]$ is the greatest integer less than or equal to $x$ for any real number $x$, is

A
$\log \left(\frac{100^{98}}{98!}\right)$
B
$\log \left(\frac{100^{99}}{98!}\right)$
C
$\log \left(\frac{100^{98}}{99!}\right)$
D
$\log \left(\frac{100^{99}}{99!}\right)$
4
IAT (IISER) 2020
MCQ (Single Correct Answer)
+4
-1

If $p(t)=\frac{t(t-1) \cdots(t-2019)}{2019!}$, then the value of

$$ \int_0^1\left(\frac{1}{t+1}+\frac{1}{t+2}+\cdots+\frac{1}{t+2020}\right) p(-t-1) d t $$

is:

A
$2019^2$
B
2019
C
$2020^2$
D
2020
IAT (IISER) Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12