1
GATE PI 2012
+2
-0.6
$$x+2y+z=4, 2x+y+2z=5, x-y+z=1$$
The system of algebraic equations given above has
A
a unique solution of $$x=1,y=1$$ and $$z=1$$
B
only the two solutions of $$x=1, y=1, z=1$$ and $$x=2, y=1, z=0$$
C
infinite number of solutions.
D
no feasible solution.
2
GATE PI 2011
+2
-0.6
If a matrix $$A = \left[ {\matrix{ 2 & 4 \cr 1 & 3 \cr } } \right]$$ and matrix $$B = \left[ {\matrix{ 4 & 6 \cr 5 & 9 \cr } } \right]$$ the transpose of product of these two matrices i.e., $${\left( {AB} \right)^T}$$ is equal to
A
$$\left[ {\matrix{ {28} & {19} \cr {34} & {47} \cr } } \right]$$
B
$$\left[ {\matrix{ {19} & {34} \cr {47} & {28} \cr } } \right]$$
C
$$\left[ {\matrix{ {48} & {33} \cr {28} & {19} \cr } } \right]$$
D
$$\left[ {\matrix{ {28} & {19} \cr {48} & {33} \cr } } \right]$$
3
GATE PI 2009
+2
-0.6
The value of $${x_3}$$ obtained by solving the following system of linear equations is $${x_1} + 2{x_2} - 2{x_3} = 4$$$$$2{x_1} + {x_2} + {x_3} = - 2$$$ $$- {x_1} + {x_2} - {x_3} = 2$$\$
A
$$-12$$
B
$$-2$$
C
$$0$$
D
$$12$$
4
GATE PI 2008
+2
-0.6
The eigen vector pair of the matrix $$\left[ {\matrix{ 3 & 4 \cr 4 & { - 3} \cr } } \right]$$ is
A
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
C
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
D
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
GATE PI Subjects
Engineering Mechanics
Theory of Machines
Machine Design
Fluid Mechanics
Thermodynamics
Casting
Joining of Materials
Metal Forming
Machine Tools and Machining
Metrology
Industrial Engineering
EXAM MAP
Medical
NEET