1
GATE PI 2011
+2
-0.6
If a matrix $$A = \left[ {\matrix{ 2 & 4 \cr 1 & 3 \cr } } \right]$$ and matrix $$B = \left[ {\matrix{ 4 & 6 \cr 5 & 9 \cr } } \right]$$ the transpose of product of these two matrices i.e., $${\left( {AB} \right)^T}$$ is equal to
A
$$\left[ {\matrix{ {28} & {19} \cr {34} & {47} \cr } } \right]$$
B
$$\left[ {\matrix{ {19} & {34} \cr {47} & {28} \cr } } \right]$$
C
$$\left[ {\matrix{ {48} & {33} \cr {28} & {19} \cr } } \right]$$
D
$$\left[ {\matrix{ {28} & {19} \cr {48} & {33} \cr } } \right]$$
2
GATE PI 2009
+2
-0.6
The value of $${x_3}$$ obtained by solving the following system of linear equations is $${x_1} + 2{x_2} - 2{x_3} = 4$$$$$2{x_1} + {x_2} + {x_3} = - 2$$$ $$- {x_1} + {x_2} - {x_3} = 2$$\$
A
$$-12$$
B
$$-2$$
C
$$0$$
D
$$12$$
3
GATE PI 2008
+2
-0.6
The eigen vector pair of the matrix $$\left[ {\matrix{ 3 & 4 \cr 4 & { - 3} \cr } } \right]$$ is
A
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
C
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$
D
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]\left[ {\matrix{ 1 \cr 2 \cr } } \right]$$
4
GATE PI 2008
+2
-0.6
The inverse of matrix $$\left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & { - 1} & 0 \cr { - 1} & 0 & 0 \cr 0 & 0 & { - 1} \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & { - 1} & 0 \cr 0 & 0 & { - 1} \cr { - 1} & 0 & 0 \cr } } \right]$$
GATE PI Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Heat Transfer
Thermodynamics
Casting
Joining of Materials
Metal Forming
Machine Tools and Machining
Metrology
Industrial Engineering
EXAM MAP
Joint Entrance Examination