1
NDA 2019 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If $$A = \left[ {\matrix{ 1 & { - 1} \cr { - 1} & 1 \cr } } \right]$$, then the expression A3 $$-$$ 2A2 is
A
a null matrix
B
an identity matrix
C
equal to A
D
equal to $$-$$ A
2
NDA 2019 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If $$A = \left( {\matrix{ 1 & 2 \cr 2 & 3 \cr 3 & 4 \cr } } \right)$$ and $$B = \left( {\matrix{ 1 & 2 \cr 2 & 1 \cr } } \right)$$, then which one of the following is correct?
A
Both AB and BA exist
B
Neither AB nor BA exists
C
AB exists but BA does not exist
D
AB does not exist but BA exists
3
NDA 2019 Paper 1
MCQ (Single Correct Answer)
+2.5
-0.83
If $$B = \left[ {\matrix{ 3 & 2 & 0 \cr 2 & 4 & 0 \cr 1 & 1 & 0 \cr } } \right]$$, then what is adjoint of B equal to?
A
$$\left[ {\matrix{ 0 & 0 & 0 \cr 0 & 0 & 0 \cr { - 2} & { - 1} & 8 \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 0 & { - 2} \cr 0 & 0 & { - 1} \cr 0 & 0 & 8 \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 0 & 2 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right]$$
D
It does not exist
4
NDA 2019 Paper 1
MCQ (Single Correct Answer)
+2.5
-0.83
If $$A = \left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$, then the matrix A is a/an
A
singular matrix
B
involutory matrix
C
nilpotent matrix
D
idempotent matrix
EXAM MAP