Determinants · Mathematics · NDA
MCQ (Single Correct Answer)
$$ \left|\begin{array}{ccc} C(9,4) & C(9,3) & C(10, n-2) \\ C(11,6) & C(11,5) & C(12, n) \\ C(m, 7) & C(m, 6) & C(m+1, n+1) \end{array}\right|=0 $$
for every $m>n$ ?
If ABC is a triangle, then what is the value of the determinant
$$ \left|\begin{array}{ccc} \cos C & \sin B & 0 \\ \tan A & 0 & \sin B \\ 0 & \tan (B+C) & \cos C \end{array}\right| ? $$
If $a, b, c$ are the sides of a triangle $ABC$, then what is $$ \begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix}$$ equal to?
If in a triangle $ABC$, $\sin^3A + \sin^3B + \sin^3C = 3\sin A \sin B \sin C$, then what is the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$, where $a$, $b$, $c$ are sides of the triangle?
Let A be a skew-symmetric matrix of order 3.
What is the value of det(4A4) - det(3A3) + det(2A2) - det(A) + det(-I) where I is the identity matrix of order 3?
Consider the determinant
Δ = $\left|\begin{array}{lll}\text{a}_{11} & \text{a}_{12} & \text{a}_{13} \\ \text{a}_{21} & \text{a}_{22} & \text{a}_{23} \\ \text{a}_{31} & \text{a}_{32} & \text{a}_{33}\end{array}\right|$
If a13 = yz, a23 = zx, a33 = xy and the minors of a13, a23, a33 are respectively (z − y), (z − x), (y − x) then what is the value of Δ ?
What is the value of a11C11 + a12C12 + a13C13 ?
What is the value of $\left|\begin{array}{lll}\text{a}_{21} & \text{a}_{31} & \text{a}_{11} \\ \text{a}_{23} & \text{a}_{33} & \text{a}_{13} \\ \text{a}_{22} & \text{a}_{32} & \text{a}_{12}\end{array}\right|$ ?
What is the minimum value of determinant of A ?
Under which of the following conditions does the determinant $\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}$ vanish?
1. a + b + c = 0
2. a3 + b3 + c3 = 3abc
3. a2 + b2 + c2 - ab - bc - ca = 0
Select the correct answer using the code given below:
If the determinant $\left| {\begin{array}{*{20}{c}} x&1&3\\ 0&0&1\\ 1&x&4 \end{array}} \right| = 0$ then what is x equal to?
If Δ is the value of the determinant
$\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|$
then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{pa_1}}&{{b_1}}&{{qc_1}}\\ {{pa_2}}&{{b_2}}&{{qc_2}}\\ {{pa_3}}&{{b_3}}&{{qc_3}} \end{array}} \right|$
(p ≠ 0 or 1, q ≠ 0 or 1)
If a + b + c = 4 and ab + bc + ca = 0, then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{a}}&{{b}}&{{c}}\\ {{b}}&{{c}}&{{a}}\\ {{c}}&{{a}}&{{b}} \end{array}} \right|$
If a1, a2, a3, _ _ _ _ _, a9 are in GP, then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{ln\:a_1}}&{{ln\:a_2}}&{{ln\:a_3}}\\ {{ln\:a_4}}&{{ln\:a_5}}&{{ln\:a_6}}\\ {{ln\:a_7}}&{{ln\:a_8}}&{{ln\:a_9}} \end{array}} \right|$
Let $A = \left| {\begin{array}{*{20}{c}} p&q\\ r&s \end{array}} \right|$
where p, q, r and s are any four different prime numbers less than 20. What is the maximum value of the determinant?